
TEX 3.1 and METAFONT 2.7 for the

Atari ST
README for the Executables

9 September 2022

by Frank Ridderbusch

Copyright c© 1990,1991 Frank Ridderbusch

Permission is granted to make and distribute verbatim copies of this description provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this description under
the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1

Preface

If you have already read earlier versions of this readme file, you can directly turn to the
section "Dynamic memory allocation".

There is one important modification, I made, that I would like to mention just at the
beginning. There are no files initex.ttp or inimf.ttp any longer, as there have been in
earlier versions. I have merged the functions which are unique to initex.ttp or inimf.ttp
into one executable (no big deal, only changing some defines). Therefore only the files
tex.ttp and mf.ttp are in the archive. The specific ‘initex’ or ‘inimf’ functions (dump-
ing) are selected by a commandline option. (See section ‘Installation and Usage’)

General Remarks

This archive contains executables for the Atari ST. All executables were generated from the
WEB and the WEB2C sources version 5.8a, which Karl Berry announced and released in a
TeXhax digest, which appeared on my news site during November 1990.

The Atari executables were first compiled with the GNU C compiler v1.37.1 running in
an Un*x cross-compiling environment. The resulting objects were then linked with the C-
library (at patchlevel 58), which J.R.Bammi and E.R.Smith put together (Thanks to both
of them for their good work). Later, after some additional minor changes, I recompiled
the C sources with GCC v1.38 and maximum optimization at home on my ST, which is
equipped with 2,5 meg. After obtaining GCC v1.40, the final recompilation took place
with this version. The executables are currently linked with the library (version 8) from
E.R.Smith, which he build for MiNT, his multitasking TOS extension. Additionally the
archive contains a BigTEX version with very large buffers (for those of you, who have a
Mega 4 ST and use very large macro packages).

If you don’t have a cross compiling environment and want to recompile the sources, you
can just as well convert the WEB sources to C on your local Un*x box and then carry the
C sources home. If you want to do this, it a good idea to decrease the constant MAXLINES
to ‘1000’ in the file src-5.8a/web2c/splitup.c. After that, you should be able to compile
all files.

Implementation Details

The files from the WEB2C kit required only very minor changes, mostly things concerning
the slash as a path separator opposed to the backslash the Atari uses. TEX and METAFONT
both discard any ‘\r’ (Carriage Return) character before a ‘\n’ (Newline) in the input of
normal tex files (The everlasting difference between Un*x and other systems; ‘\n’ versus
‘\r\n’ as line separators). I also modified the programs pltopf and vptovf to ignore any
‘\r’ characters. If you encounter any problems with error messages about illegal character
in the input file, try at first to remove any ‘\r’ characters before you investigate further.
It should be trivial to write a small utility, which removes all ‘\r’ characters from an input
file.

TEX and METAFONT both passed the trip and the trap tests on the Atari.

METAFONT doesn’t have any window support on the ST. (If someone would write a
window interface for the ST, I would be very interested.) I don’t mean a GEM interface

2

with this remark. METAFONT has a rudimentary window interface, to display proof mode
character on screen. The WEB2C kit provides support for X11, X10 and some others.

All executables will open any file in binary mode.

Installation and Usage

The complete TEX and METAFONT environment is controlled via environment variables
ala Un*x. On my Atari I’ve set the following values (as an example under gulam):

All TeX font metric files are here.

setenv TEXFONTS f:\tex\texinput\tfm

The dumped format files are found here.

setenv TEXFORMATS f:\tex\formats

search paths for TeX input files

setenv TEXINPUTS .;f:\tex\texinput\latex\styles;f:\tex\texinput\macros

The TeX string pool file is found here.

setenv TEXPOOL f:\tex

The Metafont string pool file is found here.

setenv MFPOOL f:\metafont\mfbases

The dumped base file is found here.

setenv MFBASES f:\metafont\mfbases

search paths for Metafont input files

setenv MFINPUTS .;f:\metafont\mfinputs\cmr

(For a detailed description the above environment variables see the manual pages in the
file manpages.lzh, also available from the atari archive at terminator.)

The executables don’t care about slashes or backslashes as path separators. Both can
be used. Don’t mind, that the string pool files are called *.poo instead of *.pool’. The
executables have no problems to find them.

The ‘initex’ or ‘inimf’ specific functions (dumping) are selected by giving the option
-i as the last argument. Therefore to create the plain.fmt you have to issue the following
commandline (assuming the environment variables are set correctly):

tex ’plain \dump’ -i

The same applies to METAFONT. As a sidenote, the plain.fmt file from the BigTEX
is about 110 KB larger than the one from the normal TEX, which is about 168 KB in size.
The absolute sizes vary depending on the sizes of the internal buffers.

Also the utility programs may search along some path for some files set by an environment
variable. So, if one program complains about a file, that it can’t find although it is in the
current directory, prefix the filename with ‘./’ ot ‘.\’.

Dynamic Memory allocation for TEX

The TEX versions dated later than March 2nd, 1991 have a dynamic memory allocation
scheme for most of the large arrays. The startup message reflects this (TeX Version
3.1t2var). There are certainly better schemes, to achieve dynamic allocation, but I found,
that the chosen approach required only very minimal changes to the source files.

Originally the header file texd.h (part of the sources) contained some defines for the
values of memmax, memtop, triesize etc. I changed these defines into variables and also

3

changed the dependent array declarations into pointer declarations. Now, before the main
TEX code gets control, these pointer are initialized with malloced memory. Since I don’t
know, if there are any places in the code, which assume that uninitialized memory is cleared,
the flag, which prevents TOS from clearing the whole TPA should not be set. This is to
make really sure, that malloced memory is cleared. If you have a TOS version earlier than
1.4, you don’t have to bother with this, since these version clear the whole memory with
every program launch.

To be able to modify the size of the arrays in the executables, I borrowed the idea of
the programs fixstk.ttp and printstk.ttp, which come with the binary distribution of
GNU-C for the ST. These two programs allow the modification or the display of the variable
stksize, which determines, how the stack and the memory is used by a program.

TEX-CONF.TTP

I therefore wrote a program called tex-conf.ttp, which allows the modification and the
display of TEX’s main configuration values. This works only if the executable is unstripped,
because the information, which is present in the symbol table is used to locate the variables
in the executable. Therefore you should never strip the TEX or METAFONT executables,
or, if you do, then keep unstriped versions around.

A sample output of tex-conf.ttp is shown in the following lines, if it is invoked without
any options (You also see the default configuration for the files as they are in the archive).

f:\tex >> tex-conf bigtex.ttp tex.ttp mf.ttp

TEX-CONF: The Configurator for TeX and METAFONT by fgth (Jul 18 1991)

bigtex.ttp: TEXT segment is 190556 (187K)

bigtex.ttp: DATA segment is 1084 (2K)

bigtex.ttp: BSS segment is 239258 (234K)

bigtex.ttp: bufsize is 3000 (3K)

bigtex.ttp: dvibufsize is 16384 (16K)

bigtex.ttp: fontmemsize is 50000 (196K)

bigtex.ttp: maxstrings is 7500 (30K)

bigtex.ttp: memmax is 131070 (512K)

bigtex.ttp: memtop is 131070 (0K)

bigtex.ttp: poolsize is 100000 (98K)

bigtex.ttp: savesize is 4000 (16K)

bigtex.ttp: stksize is 16384 (0K)

bigtex.ttp: triehash is 16000 (219K)

bigtex.ttp: triesize is 16000 (79K)

bigtex.ttp: approx. memory usage running as INITEX 1624562 (1587K)

bigtex.ttp: approx. memory usage running as VIRTEX 1400562 (1368K)

tex.ttp: TEXT segment is 197132 (193K)

tex.ttp: DATA segment is 1084 (2K)

tex.ttp: BSS segment is 69986 (69K)

4

tex.ttp: bufsize is 500 (1K)

tex.ttp: dvibufsize is 4096 (4K)

tex.ttp: fontmemsize is 30000 (118K)

tex.ttp: maxstrings is 5000 (20K)

tex.ttp: memmax is 50000 (196K)

tex.ttp: memtop is 50000 (0K)

tex.ttp: poolsize is 45000 (44K)

tex.ttp: savesize is 1000 (4K)

tex.ttp: stksize is 16384 (0K)

tex.ttp: triehash is 12000 (165K)

tex.ttp: triesize is 12000 (59K)

tex.ttp: approx. memory usage running as INITEX 889798 (869K)

tex.ttp: approx. memory usage running as VIRTEX 721798 (705K)

mf.ttp: TEXT segment is 198472 (194K)

mf.ttp: DATA segment is 1112 (2K)

mf.ttp: BSS segment is 121894 (120K)

mf.ttp: bufsize is 500 (1K)

mf.ttp: gfbufsize is 16384 (16K)

mf.ttp: maxstrings is 2000 (10K)

mf.ttp: memmax is 45000 (176K)

mf.ttp: memtop is 45000 (0K)

mf.ttp: poolsize is 32000 (32K)

mf.ttp: stksize is 16384 (0K)

mf.ttp: approx. memory usage for METAFONT 560362 (548K)

First of all, the program prints the sizes of the TEXT, DATA and BSS segments of the
executable. These values are found in the header of the program file. Then the current
values of some variables are printed. The number of these variables differ depending on the
file, which is currently examined. Most of these variables define the size of a memory array.

The variable stksize has the same meaning as in other GNU-C produced executables.
It determines the usage of stack and memory. ‘16k’ means, that the executable will run on
a 16 KB stack. This size works okay for me, but if you experience strange effect (bombs)
while running TEX you might increase the value. Previously I had set stksize to ‘-1L’,
which would cause the program to grab every bit of memory it could get and do mallocs
from internal heap. But that’s not very nice in a multitasking environment (aka MiNT).

The variable memtop doesn’t actually define a memory array, but it is presented, since
it’s value must be equal to memmax, when the tex.ttp runs as INITEX (-i option). memmax
may be larger than memtop for normal operation, but both (memtop and memmax) may not
be larger than 65530 for a normal sized TEX or METAFONT and not larger than 262140
for a BigTEX. The variable triehash is for information purposes only. The printed value
is directly dependent on triesize and is only used when the memory usage for INITEX
is calculated. INITEX uses 6 additional arrays for the handling of hyphenation pattern,

5

which are all subsumed under the name triehash. The 6 additional arrays are also the
reason, why an INITEX with static arrays is so much bigger than VIRTEX with the same
sizes.

The other values directly define the size on an array. The values in braces show the actual
memory, which is allocated for that array. The last line, that is printed, is the calculated
memory usage, which is basically the sum of all shown arrays plus the TEXT-, DATA- and
BSS segments sizes.

Configuring TEX and METAFONT

Now to change a value, you simple give the value name as an option during program
invocation. For example:

tex-conf -bufsize 2000 h:\tex\initex.ttp h:\tex\virtex.ttp

or

tex-conf -memtop 50000 -memmax 50000 h:\tex\initex.ttp \

h:\tex\virtex.ttp

Changing a value makes it in most cases necessary to create new dumped formats with
‘tex -i’ (*.FMT files).

I made all the above mentioned changes in the first place to get TeX also running
on a 1 meg ST. For a 1 meg ST you might modify dvibufsize, ‘memmax = memtop’, and
triesize. I was able to create *.FMT formats on a 1 meg ST (artificially achieved with
a 1536 kb ram disk on my 2,5 meg ST) with ‘memmax = memtop = 50000’, ‘triesize =

12000’ and ‘dvibufsize = 4096’, but I must admit there was nothing in memory except
the hard disk driver and an environment setting program. A triesize of 12000 is necessary
for german hyphenation pattern. If you only use English hyphenation pattern you can
decrease triesize to 8000. This in turn might allow you to increase ‘memmax = memtop’
to maximum. Remember, the main problem was initex with its 6 additional array for
hyphenation compared with virtex. The increase of triesize by 1000 costs 15000 bytes of
memory.

I’ve included the program setenv.prg and a file env.inf in the TEX executable archive.
‘setenv.prg’ is an environment setter for the AES. ‘setenv.prg’ goes into the auto folder
and ‘env.inf’ into the root directory of your boot drive. ‘env.inf’ is included as an
example for a possible configuration. I’ve included this program, to allow the invocation of
TEX from the desktop.

Concluding this section, here is a short recipe to produce plain.fmt files on a 1 meg
ST.

• check, that ‘memmax = memtop = 50000’, ‘triesize = 12000’ and ‘dvibufsize = 4096’.
(This is done with tex-conf.ttp running from a CLI)

• edit ‘env.inf’ to reflect your current setting.

• copy ‘env.prg’ to the auto folder and ‘env.inf’ in root directory of your boot drive.

• strip the auto folder to the bare minimum to get maximum memory (only your hard
disk driver and ‘env.prg’ should stay in place)

• reboot your ST to activate the new auto folder setting.

6

• invoke ‘tex.ttp’ from the desktop with the arguments ‘plain \dump -i’ or, if you start
tex.ttp with only the ‘-i’ option, type ‘plain \dump’, when TEX prompts with ‘**’
(This creates the plain.fmt file)

• repeat the above line if necessary for LaTEX.

• reboot the ST with your old configuration.

• Now you can now happily invoke ‘tex.ttp’ from a CLI and become a TEX wizard.

WARNING

The complete port is sort of a quick and dirty port. I’m quite happy with the way it works,
since I prefer a CLI environment like gulam. I’m also not a TEX or METAFONT wizard. I
only compiled the sources. So, if you experience problems or have questions, which concerns
TEX’s or METAFONT’s inner workings, DON’T write to me. I won’t be able to help you.
Instead post an article in the news group ‘comp.text.tex’.

If you have Atari ST specific questions about this implementation, you CAN write to
me.

If you are interested, I can also send a file containing the diffs relative to the files from
Karl Berry (the original WEB2C kit), but I won’t send the complete WEB and WEB2C
sources.

Additionally you will need the latest versions of the various TEX and Metafont macro
packages like Plain, LaTEX etc. Good places to look for these are the following archive
sites:

• [archive-server@]sun.soe.clarkson.edu: Email and anon ftp

• [mail-server@]cs.ruu.nl: Email and anon ftp (for European users)

• labrea.stanford.edu: anon ftp (The official TEX archive site)

• [mailserv@]ymir.claremont.edu: Email and anon ftp

• [mailserv@]rusmv1.rus.uni-stuttgart.de: Email and anon ftp (for German users)

Unsorted List of Changes

The following is a list of differences between this TEX and METAFONT executables and
the ones, which were available from the Atari archive at terminator during the end of 1990
until the middle of Jan 1991.

• Changed the path separator from ‘:’ to ‘;’. This change allows the use of standard
TOS path names (ex. ‘f:\tex’). Prior to this you had to use the ‘/dev/<partition>’
notation for path names. All the utility programs still use this notation, since I didn’t
rebuild them with the modified support files in the common directory.

• Subdirectory search is enabled.

• Upon startup a message is printed, when the executable was compiled.

• Compiled with GNU-C v1.39 and maximum optimization (-O, -fomit-frame-pointer,
-fcombine-regs. The additional flag -fstrength-reduce caused errors in the DVI
file.)

• Instead of ignoring all ‘\r’ characters in the input stream, only the ‘\r’ from a ‘\r\n’
pair is removed.

7

Change to the version compiled later than March 2, 1991

• Dynamic memory allocation for most of the internal arrays.

• Startup modified to reflect the dynamic allocation.

Contacting me

You can contact either by electronic or snail mail.

Email:

ridderbusch.kd@sni-usa.com (America (North & South))

ridderbusch.kd@sni.de (Rest of World)

Snail:

Frank Ridderbusch

Sander Str. 17

W-4790 Paderborn

Germany

